High Temperature Growth of Graphene from Cobalt Volume: Effect on Structural Properties

نویسنده

  • Giampiero Amato
چکیده

Several transition metals other than the largely used Cu and Ni can be, in principle, employed to catalyze carbon precursors for the chemical vapor deposition of graphene, because the thermodynamics of their alloying with carbon is well known. For example, the wealth of information in the Co-C phase diagram can be used to predict the properties of graphene grown in this way. It is, in fact, expected that growth occurs at a temperature higher than in Ni, with beneficial consequences to the mechanical and electronic properties of the final product. In this work, the growth of graphene onto Co film is presented together with an extensive Raman characterization of the structural properties of the material so far obtained. Previous results reporting the full coverage with negligible defective areas, in spite of discontinuities in the underlying metal, are confirmed, together with the occurrence of strain in the graphene sheet. Strain is deeply investigated in this work, in view of possible employment in engineering the material properties. The observed strain is ascribed to the high thermal mismatch with the substrate, even if an effect of the crystallographic transition of Co cannot be excluded.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SYNTHESIS AND STRUCTURAL, MAGNETIC, AND ELECTROMAGNETIC CHARACTERIZATION OF COBALT FERRITE / REDUCED GRAPHENE OXIDE COMPOSITE

In this research, cobalt ferrite powders (CoFe2O4) and cobalt ferrite/reduced graphene oxide composite (CoFe2O4/RGO) were synthesized by the co-precipitation method. The phase structure, morphology, magnetic properties, and microwave absorption properties of the produced samples were investigated through various techniques. X-ray diffraction test indicated the successful formation of pure CoFe2...

متن کامل

Selective Area Band Engineering of Graphene using Cobalt-Mediated Oxidation

This study reports a scalable and economical method to open a band gap in single layer graphene by deposition of cobalt metal on its surface using physical vapor deposition in high vacuum. At low cobalt thickness, clusters form at impurity sites on the graphene without etching or damaging the graphene. When exposed to oxygen at room temperature, oxygen functional groups form in proportion to th...

متن کامل

Density functional theory study of the structural properties of cis-trans isomers of bis-(5-nitro-2H-tetrazolato-N2) tetraammine cobalt (III) perchlorate (BNCP)

In present study, the density functional theory (DFT-B3LYP) method with SVP basis set was used for optimizing and studying the electronic structural properties of cis and trans isomers of bis-(5-nitro-2H-tetrazolato-N2) tetraammine cobalt (III) perchlorate (BNCP) as powerful explosives at 298.15 K temperature and 1 atmosphere pressure. And also, Natural Bond Orbital (NBO) population analysis an...

متن کامل

Hydrothermal synthesis of nitrogen doped graphene supported cobalt ferrite (NG@CoFe2O4) as photocatalyst for the methylene blue dye degradation

A magnetic NG@CoFe2O4 photocatalyst was developed via a facile hydrothermal method and characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and vibrating sample magnetometry (VSM) techniques. The CoFe2O4 nanoparticles were found to have a size between 100-150 nm and were unifo...

متن کامل

Review on Graphene FET and its Application in Biosensing

Graphene, after its first production in 2004 have received lots of attentions from researchers because of its unique properties. High mobility, high sensitivity, high selectivity and high surface area make graphene excellent choice for bio application. One of promising graphene base device that has amazingly high sensitivity is graphene field-effect transistor (GFET). This review selectively su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2018